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Parametric control of plane oscillations and rotations of a rigid body (a plane compound pendulum) is 

considered. The control is achieved by rectilinear displacements of a point mass with controlled 

velocity attached to the rigid body. A mathematical model is constructed and control and optimization 

problems are posed. An approximate asymptotic approach, based on a combination of the averaging 

method and the maximum principle, is proposed and applied. Rational control rules are constructed 

and the evolution of the system is analysed. The limiting cases of small oscillations and rapid pendulum 

rotations are studied. 

1. CONSTRUCTION OF THE MATHEMATICAL MODEL AND STATEMENT 
OF THE CONTROL PROBLEM 

CONSIDER the plane motion of a two-mass system consisting of a compound pendulum M 
coupled to a material point m, see Fig. 1. We assume that the mass m can be displaced in a 
specified manner relative to the body along the OM axis joining the axis of rotation 0 to the 
centre of mass M. Let 0 be the angular inclination of the pendulum, and 1 the relative 
coordinate of the point on the OM axis. We then have the following expressions for the kinetic 
energy K and potential energy II of the pendulum and the point 

K, = &roQ’2, K, = J$ m(Z2Cp’2+1*2) (1.1) 

l-II, = Mgl(r - cos@), n, = mgl(y - cos0) 

Here J,, = JAI +ML’ is the moment of inertia of the pendulum about the 0 axis and JM the 
moment of inertia about the centre of mass M, M is the mass, L the moment arm, and g is the 
acceleration due to gravity. The notation r and y has been introduced in (1.1). y= 0, fl. 
Usually r = 1, i.e. for @ = 0 the potential energy TIM = 0. Sometimes one puts r = 0 or -1, 
which makes no difference to the equations of motion and is done for convenience. One 
should put y = 0 if 1 is a phase variable; for a given function I(t) the quantity y, like r, can be 
chosen arbitrarily. 

We will take Q, to be a phase variable and 2 to be a parameter that changes in a specified 
manner (see below). As a result we obtain the Lagrange equation for 0 

(Jo + m@W + (ML + ml)gsin@ = -2mll’cP’ (1.2) 
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FIG. 1. 

For 1 = const (I’ = 0) relation (1.2) turns into the equation of motion of a plane compound 
pendulum, integrable in terms of elliptic Jacobi functions. The case 1=1(&t) is of interest in 
applications, i.e. I is a slowly varying parameter (with rate of change I’ -E, where 1~91 is a 
small parameter). It is usual to take as the unit of time some characteristic quantity associated 
with the motion of the pendulum, for example the period of small oscillations. The evolution 
of the oscillations and rotations can be effectively investigated using asymptotic methods of 
non-linear mechanics (the averaging method [l, 21, etc.). 

The rational statement and solution of the problem of controlling the oscillations and 
rotations of the pendulum by means of displacements of the mass m, i.e. variation of the 
parameter 1 in system (1.2), is of considerable interest in its theoretical and applied aspects. A 
special case of parametric control for a single-mass system (M = 0) where the point nt had its 
displacement velocity regulated along a massless rod (i.e. a simple pendulum of varying 
length), was considered in [3]. Here we change to the statement of the control problem for the 
motions of a system with the more general form (1.2). 

We will assume that the rate of change ‘u of the parameter 1 is a controlling action from a 
defined class, and, in particular, that it can take any values within given limits u,, z 

1’ = v, u = U(C), -01 s v(t) c 2)2 (1.3) 

Here u(t) is an integrable function, the constants u,, 2 satisfy the conditions U, ~0, V, > 0, and, 
as is usual, from now on we put -u, = V, = u,. The problem of implementing such a kinematic 
control of the motion of a mass M requires additional considerations. The analysis of [3] has 
shown that electromechanical control should have negligibly small delay times compared with 
a typical pendulum oscillation or period of rotation. We also note that under realistic 
conditions the limits of the variation of 1 are also bounded: 4 G l(t) G l,(f), in particular 
I Z(t)- 1’ IS cl’, i.e. the statement of the control problem should contain phase restrictions. 

We note the following fundamental property of the parametrically controlled system (1.2) 
(1.3). For V(?,) = 0, @(lo) = 1vz, n = 0, +l, . . . , it is uncontrollable for all t, s t < 00. This means 
that in the lower or upper positions of equilibrium of the pendulum there is an infinitely long 
time with arbitrary control U(t) and variation of Z(r). The lines (xn, 0, f) are invariant in the 
three-dimensional phase space (a, w, r>. However, one can achieve u(t) for which these states 
become Lyapunov-unstable. Then external perturbations, acting on the system in realistic 
conditions, take it out of the equilibrium position to a sufficient extent and an effective control 
process (“build-up”) begins. If the equilibrium position is stable, and the displacements are 
small, the build-up requires significant (asymptotically large) time and expenditure of control 
resources (see below). Hence, in such situations it is desirable to have displacements of the 
point m perpendicular to the OM axis, and these are often used in practice. 
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We will therefore formulate the problem of taking the pendulum (1.2) into the required state 
of oscillation or rotation in a finite time by varying the parameter I satisfying (1.3). The final 
value of I may also be fixed. Here for control in the form of a program a or synthesis u(t, a, 
w, 1) one can also impose additional optimality conditions in terms of some criterion (time- 
optimal, least “work”, etc.). The construction of the control and the analysis of motion in the 
general case are very laborious and can be performed numerically, which requires many 
complex calculations of the boundary-value problem associated with the maximum principle 
[4]. This is not a constructive approach. 

Here we propose to use an efficient approach [3] based on combining the mathematical 
techniques of the maximum principle [4] and the averaging method [l, 21. For this we assume 
that the controlling action 2) is in some sense small, and the control process is accomplished 
over an asymptotically large period of time. In such a control there will be many (in practice 
several) oscillations or rotations of the pendulum and a significant change in the slowly 
changing characteristics of the motion [3]. We will formalize the proposed asymptotic app- 
roach by introducing a small numerical parameter E and dimensionless variables and system 
parameters 

e=vt, v2= ML-+?& _ ML 1+x 
Jo-W,2 8=~1+c18’o 

(1.4) 
0 = 11,-l, 10 >o; E = uo(vz,)-‘, El4 = u(vl(# 

Here 8 is the dimensionless time, v is the frequency of small oscillations at I = I,,, 41 is a length- 
scale for the displacement of the mass m from the 0 axis (14 I> 0) and j.t and x are inertial- 
geometric dimensionless parameters (p > 0; to fii our ideas it is assumed that 1+ ~a > 0). The 
small parameter E in (1.4) is associated with the ratio of the longitudinal and transverse 
velocities of the point nt. Other ways of non-dimensionalizing are possible. As a result system 
(1.2), (1.3) can be represented in the form 

u’ = EU. lulG 1; 8~~0~‘*, 8, =0&-i, 8-l 

Here we have assumed the symmetry of the constraints (1.3) on u (-y = u, = u,,) in order to 
simplify the calculations. We remark that the dimensionless equations for a simple pendulum 
of variable length [3] can be obtained from (1.5) by passing to the limit lt, x -+ 00 (J,,, M + 0). 

2. REDUCTION TO STANDARD FORM OF WEAKLY CONTROLLED SYSTEMS 
WITH ROTATING PHASE 

According to (1.5), when E =0 the parameter o=const (the point is frozen), and a 
compound pendulum with fixed point m performs oscillations or rotations with constant 
“energy” E given by the values of a, @’ and o at some instant of time 8 

E = D#‘2 + B(l - cos Q) = const, o = const (2.1) 

D=~(1+jur2)(1+p)-* >O, B=(I+@(l+x)-‘>O 

Here E is the dimensionless “energy” of the oscillations or rotations, taken with respect to 
the quantity (Jo + rn@ti = (ML+ m&)g; in accordance with Sec. 1, see (l.l), the quantities r and 
y = 1, which gives E = 0 when @ = 0’ = 0. The phase integral specifies the connection between 
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@, E and 8 with the help of the elliptic Jacobi functions. It is not written out because its explicit 
expression is not required in the constructions below. 

As in [l-3] we differentiate the integrals (2.1) with respect to 8 using the perturbed system 
(1.5). For the slow variables E and Q we obtain the equations 

E’ = &~[-d@‘~ + b(l- c.oscP)] = &uG(cb,E.o) 

CT’=&& lulC1 (d=~(l+&t)-‘, b=x(i+&) 

(2.2) 

The expression for the function G is obtained after the substitution @‘2= D-‘[E- 
B(1 - cos@)] in accordance with (2.1). In order to close system (2.2) it is necessary to write out 
the equation of the perturbed phase and the phase integral given above. However, for the 
approximate solution of the control problem with the slow variables E, a one can use the proe- 
edure of averaging over phase trajectories of the unpe~~bed system without using the explicit 
dependence on the phase [2,3]. 

We consider the problem of significant changes in the variables E and o over the asymp- 
totically long time interval 8 E [O,, CL] 

E(fl,,*) = E”**, ~(O~,.} = GO**, Z[ul + mitt (2.3) 

The time 8, at which the process finishes can be either fixed or determined by the solution 
of the control problem. The optimality criterion I[u] in (2.3) can either be time-optimal 
(1[u] = 0.) or an integral quadratic functional describing the expenditure of “energy” during 
the control; for fixed 8. one can put I[u] = +E*, etc. We note that the values of o(&) (and also 
o(O), e E &lo, 9,]) may be si~~cant (as in the J,, M = 0 case [3]), or they may not, as in some 
other cases (see below). 

We will now discuss the equations of controlled motion in the case of small-amplitude 
oscillations [3], which can have various orders of smallness with respect to E. Thus, putting 
@ = ~(E)(P, Q, - 1 into (l.S), we obtain for cp 

2Drp”+Byp (2.4) 

If Q, = E”(P with k 2 1, the terms linear in EQ (2.4) remain because the non-linear terms are 
of order e2 and higher. In Eq. (2.4) we change to “amplit~e-phase” variables according to the 
formulae 

cp=AsinY, cp’= AQCOSY, Q2 =HBD-’ =R2(o)>0 (2.9 

As a result we obtain explicit equations for A, Y, a for the first approximation in E 

3 
A’ = -qf(a)Acos2 Y i- $$sin3 Y cosY, A(&,) = A0 > 0 

a ‘- -W, o@,) = o”, IUK 1, e* % 8 < 8, = e&-l 
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For brevity we do not show the dependence of f on u, x; we note that f + 3(2a)-’ as p, 
x + 00 [3]. System (2.6) is essentially non-linear because the frequency f2 depends on one of 
the unknown slow variables [2, 31. It follows from (2.6) that A(8) = 0 if A0 = 0, and, further- 
more, one can achieve an unlimited increase or decrease in the amplitude when A0 > 0, 8 + 00. 

We note that the cubic addition to Eq. (2.6) for A does not affect the amplitude to first order in 
E because its average over Y vanishes. It is also important to note that for small oscillations 
their amplitude can be changed by the same order of smallness E for 8. = 0~ since, in general, 
the effectiveness of the control decreases as A + 0. 

3. APPROXIMATE SOLUTION OF THE PROBLEM OF THE OPTIMAL AND 
QUASI-OPTIMAL CONTROL OF PENDULUM MOTIONS 

3.1. Control of small oscillations 

Avoiding the singularities of transformation (2.5) we assume that 1 + xo > 0; the case of small 
frequencies Sz and passage through zero requires a separate consideration [5, 61. We will first 
consider the problem with a fixed, fairly long process end time and an integral quadratic 
functional with no restriction on the control u [3] 

A@,) = A’, ~(0,) = IS*, I[u] = (3.1) 

Using the approach employed in [3] we obtain an averaged maximum principle boundary- 
value problem for a second-order Hamiltonian system. With an error of O(E) we construct an 
optimal control u* and the required small variables p, o and the p, q conjugate to them 

li =-pfcos2Y+q, p=const, r=Ee)E[Tt),e] (3.2) 

P-P”=J~~P.h,f(S))dS, ‘5-zo =*y 6s 
IJo Ph + WP2f2 (5)lX 

Here A*(p* =0), o* and 0 are specified and the unknown variables are the parameters h, 
the averaged Hamiltonian (over slow time T), and p the variable conjugate to p (p = const 
because p is cyclic.) They are governed by two equations for p and a with z = 8. As a result, the 
implicit relations (3.2) specify the control u* in the form of a “partial” program with respect to 
the slow variables (where the phase Y should be measured) or a synthesis if one can construct 
a solution of the boundary-value problem (3.2) for arbitrary initial conditions p”, cr” [3]. The 
expression for cos Y in u* (3.2) can be replaced in accordance with (2.5): COSY = #(An)-‘, 
where A = [cp’ + (‘p’/i2)2f’2. 

If a@.) = o * is not fixed in (3.1) and is unknown, then q(0) = 0 and from the expression for 
h with z = 8 we obtain the connection between the parameter h and the other unknowns p , o*: 
h = (3/16)p’f’(a*). Substituting h into Eqs (3.2) for p and o with T= 8, we obtain two 
transcendental equations for the unknowns p, a*. As in the preceding case, these equations can 
be solved numerically because these expressions reduce to ultra-elliptical integrals (the 
denominator under the integral sign containing the square root of a sixth-degree polynomial in 
a) and more-complicated functions. 

We will now consider the time-optimal optimization problem for system (2.6). Using the 
approach proposed previously [3] we obtain expressions for an approximate optimal control 
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U* and averaged Hamiltonian h 

u* = sign(q -pf cos2 Y) E sign@ - scos2Y) 

A= I 

IA, Ikl>l, k=r/s 

(2/7r)lSI[(l--9% +karcsink], lkl=z 1 

(3.3) 

h,p=const, r=q-s, s=j$pf(o) 

Note that k is a slowly-varying parameter. The maximum principle boundary-value problem 
in slow time z is obtained from the Hamiltonian h = h(o, p, q), see (3.3) 

p’ = ahlap. p = const, u’ = ah/aq, q* = -ah/as 

p(ro) = PO9 p(0) = 0, o(20) = a? (o(0) = CT* v q(0) = 0) 
(3.4) 

Ash does not depend on p, and p = const, it is the last two equations of (3.4) for o, q which 
are to be integrated. One can therefore use phase-plane methods; furthermore, the autonom- 
ous system for 6, q is Hamiltonian, i.e. h = const. By using this integral one can integrate the 
system completely. If the variable o varies monotonically, it is convenient to use it as an 
argument and integrate equations for dqldo and dpldo. In the I k I> 1 regime the integration is 
elementary and leads to the expressions 

P=P” q=~f~~~+c, c = q* -$Pfb*) 

(3.5) 
l 

u = u, = sign c, 0’ = sign c = sign(0’ - a’), c = const 

This case corresponds to displacing the mass m to a specified position o* with maximum 
velocity u* =_+l, with p=O for o=o*, i.e. z = 0 = zO+ lo * -o” I, which corresponds to the 
special initial condition p”. If however o* is not fixed, then q* = 0 in (3.5) and the sign of p is 
chosen so that the condition p(o*) = 0 is satisfied for some CJ *. This control regime is directed 
towards the variation of o. In the more general case I k IS 1 the control has an oscillating bang- 
bang character 

u* =up= sign@j)sign(k - cos2Y) (3.6) 

and leads to purposeful simultaneous variation of the oscillation amplitudes, i.e. the variables p 
and o. For I k 191 it follows from (3.6) that there is almost no drift for the point m: a(O)-a”, 
and by choosing the sign of p one can obtain the required variation of p: p’ = -(l/n) I f(a”) I 
signp’. In the general situation control of the motion will contain intervals in both regimes: 
I k I>1 and Ik 1~1. The construction of an all-purpose algorithm is extremely difficult. 
However, the analysis clarifies the mechanism of control by oscillations and displacements and 
gives the following rational control law, consisting of two stages. In the first stage the I k I> 1 
regime is established, corresponding to the fastest displacement of the point m 

l 

u =u Q = sign(a’ -Go), 0, = z()+la’ -oOl, z E [‘Tg,0,] 

a(z) = CT0 + $=$(-,)9 
e- 0 

PO=-F jf(a(q))dq+pO 
*0 

From a time z = 0, the k = 0 regime is used, according to which (see (3.6)) 

(3.7) 

Id* =up = -sign@fbos2Y), signs = -signp(Oa) (3.8) 
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The quantity cos2Y can be expressed in terms of a, Cp’ and Q. 
As a result the total time 0=~~ required to change the slow variables p and o completely 

with an error of 0 (e) is 

8-zo = lo’ - a01 + ~p(Ba)l &J’)l-1 (3.9) 

If the value of o(Q) is unspecified, the quantity CT* can be chosen in (3.7), (3.8) so that the 
total time 6 in (3.9) is a minimum. In cases when the additional requirement o(z)*o”=o* is 
imposed on u, which often occur in practice (swings), the optimal control regime is (3.8), see 
[3]. Thus for small oscillations one can use the control of up to achieve an amplitude variation 
that is exponential in the time 2: A = A* expp(r), p(O) = 0, where by (3.8) p(z) is a linear 
function of z =&Cl and is negative in the problem of increasing the oscillation amplitude 
(A c A*) and positive for their damping (A > A*). It follows from the expression for u,, that 
the control changes sign four times at the values Yi =(2i+l)(n/4), i = 0, 1, 2, 3 at times 
corresponding to the mean phase between the maximum and minimum deflections. At these 
times the displacement of the mass m is extremal; between neighbouring points its 
displacement proceeds uniformly, see Fig. 2. 

3.2. Control of large oscillations 

We will use the approach described above to control in succession the slow variables E and 
o described by relations (2.2) and (2.3). At the initial stage ZE[Z~, O,] we have, like (3.7) 
o = o(z), U* = u, and 0, = T,+ lo * -o” I. In this case the energy E varies according to the 
averaged Eq. (2.2) 

E’= ~G,(E,cJ(T)) = u,G;(E,T), E(zo) = E” 

Go = (G) = 6 - bD-‘(E - B) -(II + dD-‘B)h 
(3.10) 

4 DJ+ 
A+osuQ=T s 

0 
j 

cos 0&D 

0 0 (corn -cos@‘)~ 

To=To(E,a)=4 ; 0 
He* 

J 
d# 

0 (cosQ,-cos@‘)K 

a’ = @*(En) = arccos(l- EB-‘), CJ = CT(Z) 

F10.2 
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Here @* is the maximum amplitude of the oscillations and T, is the period; T, and A are 
expressed in terms of complete elliptic integrals. The coefficients D, B and d, b are given in 
(2.1) and (2.2), respectively; they depend on o and other parameters. The Cauchy problem for 
(3.10) is integrated for z E [r,,, O,]: E = E(z), E,, = E(Q,). 

In the concluding z E (0,, Q] stage we choose the controlling function u* = u, like u* = u,, in 
(3.8) so that the point m does not drift, i.e. o’=(u,) = 0, but the required oscillation energy 
change is accomplished (0 < E < 2B). To this end we represent the function G of (2.2) in the 
form 

G(4, E, a) = A(@, E, o) + G,(E, a), A = G - G, (3.11) 

The function A has the form A =a- bcos@, where u and b are functions of E and o, with a, 
i.e. G., being chosen so that the time intervals for positive and negative values of A are equal 
to T, /2 over the period T,. Using the periodicity and symmetry properties of the function G 
with respect to a, we define the function G. in the form 

G,(E,o)=G(cb,,E,a), 4’.=4.(E,o)<4’(E,a) 
(D. 

I 
d4 ,5 B )4 0 - 9 

o (cos@-coso’)~ 8 D 

(3.12) 

The root a. of Eq. (3.12) ensures the equality of the time intervals for A mentioned above. 
We now impose the control u* = u, 

u’ = uz = sign(E’ - E,)signA(@, E, a’) (3.13) 

We will obtain the solution of the problem for E to a first approximation in E 

7-0a = sign(E’ -E,) i ’ 
E, k&a’) e= $_P 

A&!?, a) = (WI’, E, a>9 (3.14) 

where averaging over 8 is replaced by averaging over @ as in (3.10). The total time 0 in (3.14) 
can be minimized with respect to o* if o(0) is unspecified. The control regime (3.13) and (3.14) 
will be quasi-optimal if one requires in addition that o(z)=o”=o*. Control regimes (3.10), 
(3.13) and (3.14) contain the implicit assumption that the pendulum only completes one 
oscillatory motion in z E [r,, 01, i.e. E < 2B. They have to be supplemented by an analysis of 
rotational motions. 

3.3. Control of the rotations of a pendulum 

For E > 2B (see (2.1)) the pendulum will perform non-stopping rotational motions because 
@’ + 0. It is not automatically the case that E < 2B for all z E [r,, 0, ] at the first stage of control 
of large oscillations given by (3.10) i.e. that the pendulum only performs oscillations. Entry 
into the rotating domain is possible in which the angular variable 0 changes by +2x in the 
period T, 

D %2X 

To(E,o)= E 0 L [1-~(l-cos@)l-~d@=2z(DIB)K~H[1+~,~+y2~2+...] 
(3.15) 

$=BIE<M, y, =g y2=9/i6 ,... 

For “fast rotations” T,==2x(D/ E)1’2 + 0 as p + 0. The approximate solution of the unperturb- 
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Tbt5 velocity a’ is given by (2.1); the variable E = E(z) is now assumed to be known as a 
solution of the Cauchy problem (3.10) for z E [z,, S,].. At the final stage 2: E (0,, Q] we use the 
u* = uE regime (3.13) in which the function G = GfcXI,, E, o), where @* = @Z&f& a) is the root of 
the equatim 

(3.17) 

where yf is the phase of the rota~onal motion. At the first stage @* = gG, z E[z~, 0@] the energy 
E is described by the abbreviated averaged equation 

with an error of o(e’ + p). This can be integrated by perturbation methods with an error of 
U(fi”) : E = E(z). After a time z = 0, the completion stage of controlling the energy from the 
state Es =E(@J to E * = E(0) occurs with no drifting of the point m, We have the following 
expressions @=a*) 

It follows from (3.19) that in the fast rotation case one can only achieve a power-law (in 
particular, a linear) variatioon in the energy and angular vekcity of the pendulum with respect 
to ‘z. 

In the generaI case the proposed rat.ionaE approach to ~~ntr~~~ng the motions of a pend&um 
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can include oscillations and rotations at both stages. This requires the application of regimes 
described above in Sets 3.1-3.3. As has been established, the efficiency of parametric control is 
very small at small deviations from the equilibrium position, and this is well known in practice. 
It would be of interest to study the control of pendulum oscillations and rotations when there 
are more ways of controlling the displacements of the point m relative to the pendulum, and to 
construct a rational control regime for such a situation. For example, one could consider two- 
dimensional motion (longitudinal and transverse) in some domain, oscillatory and rotational 
(double pendulum) motions, relative rotations by a rotor, etc., including taking into account 
the dynamics of the driving devices displacing the internal masses. Note that the results 
obtained carry over to the case when the internal mass m also has significant geometric 
dimensions, i.e. its central moment of inertia J,,, is comparable with J,,. If there are no relative 
rotations and the centre of mass can only be displaced along the line OM, see Fig. 1, then 
taking J, into account amounts to adding x’J,,,W’ to the expression for K,,, (l.l), and setting 
JO equal to JO* = J, + ML’ + J, throughout what follows. 
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